A second addition formula for continuous q-ultraspherical polynomials

نویسندگان

  • Tom H. Koornwinder
  • Mizan Rahman
چکیده

This paper provides the details of Remark 5.4 in the author’s paper “Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group”, SIAM J. Math. Anal. 24 (1993), 795–813. In formula (5.9) of the 1993 paper a two-parameter class of Askey-Wilson polynomials was expanded as a finite Fourier series with a product of two 3phi2’s as Fourier coefficients. The proof given there used the quantum group interpretation. Here this identity will be generalized to a 3-parameter class of Askey-Wilson polynomials being expanded in terms of continuous q-ultraspherical polynomials with a product of two 2phi2’s as coefficients, and an analytic proof will be given for it. Then Gegenbauer’s addition formula for ultraspherical polynomials will be obtained as a limit case. This q-analogue of Gegenbauer’s addition formula is quite different from the addition formula for continuous q-ultraspherical polynomials obtained by Rahman and Verma in 1986. Furthermore, the functions occurring as factors in the expansion coefficents will be interpreted as a special case of a system of biorthogonal rational functions with respect to the Askey-Roy q-beta measure. A degenerate case of this biorthogonality are Pastro’s biorthogonal polynomials associated with the Stieltjes-Wigert polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bivariate Knop-Sahi and Macdonald polynomials related to q-ultraspherical functions

ABSTRACT: Knop and Sahi introduced a family of non-homogeneous and nonsymmetric polynomials, Gα(x; q, t), indexed by compositions. An explicit formula for the bivariate Knop-Sahi polynomials reveals a connection between these polynomials and q-special functions. In particular, relations among the q-ultraspherical polynomials of Askey and Ismail, the two variable symmetric and non-symmetric Macd...

متن کامل

The structure relation for Askey-Wilson polynomials

An explicit structure relation for Askey-Wilson polynomials is given. This involves a divided q-difference operator which is skew symmetric with respect to the Askey-Wilson inner product and which sends polynomials of degree n to polynomials of degree n+ 1. By specialization of parameters and by taking limits, similar structure relations, as well as lowering and raising relations, can be obtain...

متن کامل

On a Separation Theorem for the Zeros of the Ultraspherical Polynomials

1. It will be recalled that the ultraspherical polynomials are those which are orthogonal on the interval ( — 1, 1), corresponding to the weight function (1— x2)x~1/2, X>—1/2. In what follows X = 0 will also be excluded. The coefficients of these polynomials are functions of the parameter X appearing in the weight function, and the symbol P„(x, X), indicative of this fact, will be used to denot...

متن کامل

ar X iv : q - a lg / 9 60 50 33 v 1 2 1 M ay 1 99 6 CRM - 2278 March 1995 q - Ultraspherical Polynomials for q a Root of Unity

Properties of the q-ultraspherical polynomials for q being a primitive root of unity are derived using a formalism of the soq(3) algebra. The orthogonality condition for these polynomials provides a new class of trigonometric identities representing discrete finite-dimensional analogs of q-beta integrals of Ramanujan. Mathematics Subject Classifications (1991). 17B37, 33D80

متن کامل

Bounds for Extreme Zeros of Quasi–orthogonal Ultraspherical Polynomials

We discuss and compare upper and lower bounds obtained by two different methods for the positive zero of the ultraspherical polynomial C n that is greater than 1 when −3/2 < λ <−1/2. Our first approach uses mixed three term recurrence relations and interlacing of zeros while the second approach uses a method going back to Euler and Rayleigh and already applied to Bessel functions and Laguerre a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003